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Wetting between concentric spheres 

Michael Swift and Julia Yeomans 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 24 August 1989 

Abstract. Results are presented for the mean-field phase diagram of a system at bulk 
coexistence contained between two concentric spheres as a function of the sphere radii, 
the temperature and the interactions with the surface. As with the wetting of a spherical 
substrate, re-entrant transitions are found. The relevance of the results to the wetting of 
an array of spheres is emphasised. 

The wetting transition on planar surfaces is now well understood [ l ]  but very little 
attention has been paid to curved substrates [2-71. Therefore our aim in this letter is 
to present results for the density profile of a system at bulk coexistence, contained 
between concentric spheres, as a function of its interactions with the substrates. 

Starting from a Landau form for the free energy, we obtain the critical surface 
which separates the two-phase region, where there is a first-order transition between 
two different density profiles, and the one-phase region, where the profile varies 
continuously. We are able to do this analytically for the case where the surface fields 
on the inner and outer spheres, HI and H 2  , are equal. Numerical results are presented 
for HI # H 2 .  

This work extends a recent study of wetting on a spherical substrate which uncovered 
new and unexpected features [6,7]. In\particular, there were found to be two distinct 
regions of first-order transitions; r / ( 3  1 and r / [ s  1 where r is the sphere radius and 
[ the bulk correlation length. Similar behaviour is found for the case considered here. 
We also emphasise the relation of this problem to the wetting of an array of spheres, 
which is likely to be an easier geometry to handle experimentally. 

Consider two concentric spheres of inner and outer radii r ,  and r2 respectively, 
with a fluid contained between them. A standard form for the Landau free energy 
functional is 

where m ( r )  is the order parameter profile. We consider the case where f [m(r ) ]  
corresponds to two-phase coexistence in the infinite system 

f [m(r ) ]  = ao+a2m2+a4m4 (2)  

where u4= 1, a ,  = 2( T- T,) and a, is chosen such that min{f[m(r)]} = 0. Then (2)  
can be written in terms of the bulk order parameter, mb, 

f [m(r ) ]=(m2-mi)2  (3)  
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for T S  T,,  the critical temperature. y,, the local surface energy per unit area, is taken 
to be 

y , [ m ( r , ) I  = - h , [ m ( r , ) ] - 4 g , [ m ( r , ) I ’  i = l , 2  ( 4 )  

where h, is a surface field and g, a surface-coupling enhancement. 
It is convenient to define the reduced variables 

in  terms of which ( 1 )  becomes 

1 
- H , x ~  -$G,x:  - d 2 (  Hdxd + ; G ~ X ; )  ( 6 )  

where we have used x ,  and xd as shorthand for x ( p  = 1 )  and x ( p  = d )  respectively and 

in terms of the bulk correlation length 

5 = c ’ / ? / 2 m h .  

Extremisation of ( 6 )  leads to the Euler-Lagrange equation 

d2x 2 dx 
-y+- -= ( Y Z X ( X 2 -  1) 
dP P dP 

together with the boundary conditions 

[$-Il = - H I  -G,x,  

[ $ I d  = Hd + Gdxd. 

The solutions of (10) may be found numerically for a given (Y and d by fixing the 
values of H, and G, on one surface, say the inner sphere, and iterating to obtain the 
outer surface density and its derivative 

Elimination of x I  between these equations defines the curve which relates xd to xd for 
a given HI and G I .  Examples of these are given in figure 1 .  Solutions then correspond 
to the intersection of this curve with the straight line defined by (12). 

Several points of intersection can exist corresponding to maxima and stable and 
metastable minima of the free energy. We are interested in finding where different 
solutions exchange roles as the global minimum as a function of, say, Hd and Gd, as 
this corresponds to a first-order transition between different order parameter profiles. 
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Figure 1. Trajectories, X d ( q ) ,  which satisfy equations ( I O )  and (11)  for a = I ,  d = 2  and: 
a, H ,  =0, G ,  = 1;  b, HI = 0, G ,  = 2; c, H, = 2, GI = 1. Shown as a broken line is X', = 

G,,x,, + H,, for H,, = 0, G,, = -0.5 (see (12)).  Where this intersects the curves the free energy 
(6)  is extremised for the given surface fields. 

To this end it is helpful to note that the free energy difference between solutions 
corresponding to outer surface densities xd and x l  can be written in the form 

where the integral is taken along the curve X d ( x d ) .  This equation is just an  equal areas 
rule which indicates that the transition occurs when the total area enclosed by the 
curve X d ( x d )  above and below the line (12) is zero. 

We first consider the nature of the transition if HI and GI are fixed and Hd is 
allowed to vary. Recall that this corresponds to vertical displacements of lines such 
as curve d of figure 1, the slopes of which are determined by G,,. Consideration of 
the geometry of the curves X d ( x d ) ,  examples of which are shown in curves a-c of figure 
1, together with the equal areas rule, (14), now determines the phase diagram. For 
trajectories with a finite minimum gradient, G,,, say, if G,, < Gmi, the profile will vary 
continuously, whereas for Gd > G,,, a first-order jump between two different density 
profiles will occur. Thus we can define a critical surface given by G,, = G,,,. Note 
that 'rotated' trajectories, where G,,, is -CO, such as curve b in figure 1, always lie 
within the two-phase region. 

The critical surface for the special case HI = Hz can be obtained analytically because 
symmetry considerations demand that a transition is only possible for HI = H2 = 0. 
The minimum gradient occurs at xd = 0 and can be obtained from linearising (10) and 
solving it exactly. This gives a critical surface 

1 - GI - a  t an(d  - 1 ) a  
a + ( 1  - G I )  tan(d - 1 ) a  

Gd = CY 

dividing the space (a ,  G I ,  G d )  into a one-phase and a two-phase region as shown in 
figure 2. Note that the transition in the two-phase region is between symmetric profiles 
W P ) .  
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Figure 2. Schematic representation of the critical surface for H ,  = H,,. The two-phase 
region lies in front of the surface and the one-phase region behind it. By symmetry, any 
transition fakes place at H ,  = H,, = 0. 

For HI # 0 the phase boundary must be calculated numerically, as the minimum 
gradient of x d ( x d )  no longer occurs at the origin (see curve c in figure 1). We find 
that the one-phase region extends to larger values of a as lHll increases. In the limit 
a + 0 the critical surface is independent of H I .  

To explore the phase space further we have also considered fixing the boundary 
conditions on the outer sphere, Hd and Gdr and looking at the nature of the transition 
as HI is varied. Again there is an extension of the one-phase region as lHll increases 
from zero. For larger Hd an interesting new feature appears: a plot of the critical 
surface in the (a' ,  G I )  plane starts to show re-entrant behaviour as Hd increases. 
Hence there can be two distinct regions of first-order transitions for a given Hd, Gd 
and d as shown in figure 3. Profiles corresponding to the points (a)  and (b )  in figure 
3 are shown in figures 4(a )  and ( b ) .  Similar re-entrant behaviour was seen in the 
wetting transitions on a spherical substrate [6,7]. A full physical explanation is still 
lacking. 

61 

Figure 3. Cross sections of the critical surface showing the re-entrance of the two-phase 
region. The curves were obtained for Gd = -0.25 and d = 2. 
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( a )  (bl  

Figure 4. Density profiles at coexistence obtained at the points H,, = -1.25, G,, = -0.25, 
G ,  = 1, d = 2 and ( a  1 a'= 0.4; ( h )  a'= 2.8, corresponding to points ( a )  and (b)  in figure 3. 

The qualitative dependence of the critical surface on the sphere separation can be 
obtained by noting that as d increases Gmi, becomes more negative. Hence the extent 
of the one-phase region is reduced. As d increases the trajectories X d ( x d )  can spiral 
round, allowing for several metastable and  unstable solutions which correspond to 
density profiles which can oscillate. 

It may be useful to bear our results in mind when considering the experimentally 
more accessible problem of the wetting of a regular array of identical spheres in a 
fluid at bulk coexistence. Because of the periodic nature of the problem the geometry 
is equivalent to a sphere centred within a cube with the normal derivative of the density 
profile constrained to be zero on the surface of the cube. One might expect the solutions 
of this problem to be similar to those for the concentric sphere geometry considered 
here with Hd = Gd = O .  For these boundary conditions it follows immediately from 
(15 )  that the critical surface is given by 

a ( 1 - d ) + ( l + a ' d )  tan(d -1)a 
t a n ( d - 1 ) a - a d  

G ,  = 

with the first-order transition being between profiles symmetric about x ( p )  = 0. 
Several other avenues for future work are opened up  by the results presented in 

this letter. In particular, the system considered is finite in all dimensions. Hence any 
transition will be rounded [8]. The extent of the rounding has been discussed in [7], 
where it is suggested that for the wetting of a single sphere at  least, the transition will 
still be observable, but more work is needed. Another effect of the finite size is that 
the surface fields will move the system away from coexistence [ 9 ] .  Therefore the 
addition of a bulk field is needed to study the phase diagram more completely. Such 
a field also allows us to investigate the competition between capillary condensation 
[lo] and  the re-entrant transition. This work is in progress and  will be reported 
elsewhere. 

We should like to thank J 0 Indekeu, P Sen and P J Upton for helpful comments. 
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